You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

335 lines
10 KiB

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# GuessIt - A library for guessing information from filenames
# Copyright (c) 2011 Nicolas Wack <wackou@gmail.com>
#
# GuessIt is free software; you can redistribute it and/or modify it under
# the terms of the Lesser GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# GuessIt is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Lesser GNU General Public License for more details.
#
# You should have received a copy of the Lesser GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
13 years ago
from __future__ import unicode_literals
from guessit import UnicodeMixin, s, u, base_text_type
from guessit.language import Language
from guessit.country import Country
import json
import datetime
import logging
13 years ago
log = logging.getLogger(__name__)
13 years ago
class Guess(UnicodeMixin, dict):
13 years ago
"""A Guess is a dictionary which has an associated confidence for each of
its values.
As it is a subclass of dict, you can use it everywhere you expect a
simple dict."""
def __init__(self, *args, **kwargs):
try:
confidence = kwargs.pop('confidence')
except KeyError:
confidence = 0
dict.__init__(self, *args, **kwargs)
self._confidence = {}
for prop in self:
self._confidence[prop] = confidence
13 years ago
def to_dict(self):
data = dict(self)
for prop, value in data.items():
if isinstance(value, datetime.date):
data[prop] = value.isoformat()
13 years ago
elif isinstance(value, (Language, Country, base_text_type)):
data[prop] = u(value)
elif isinstance(value, list):
13 years ago
data[prop] = [u(x) for x in value]
return data
def nice_string(self):
13 years ago
data = self.to_dict()
13 years ago
parts = json.dumps(data, indent=4).split('\n')
for i, p in enumerate(parts):
if p[:5] != ' "':
continue
prop = p.split('"')[1]
13 years ago
parts[i] = (' [%.2f] "' % self.confidence(prop)) + p[5:]
return '\n'.join(parts)
13 years ago
def __unicode__(self):
return u(self.to_dict())
def confidence(self, prop):
13 years ago
return self._confidence.get(prop, -1)
13 years ago
def set(self, prop, value, confidence=None):
self[prop] = value
if confidence is not None:
self._confidence[prop] = confidence
def set_confidence(self, prop, value):
self._confidence[prop] = value
13 years ago
def update(self, other, confidence=None):
dict.update(self, other)
if isinstance(other, Guess):
for prop in other:
self._confidence[prop] = other.confidence(prop)
if confidence is not None:
for prop in other:
self._confidence[prop] = confidence
def update_highest_confidence(self, other):
13 years ago
"""Update this guess with the values from the given one. In case
there is property present in both, only the one with the highest one
is kept."""
if not isinstance(other, Guess):
13 years ago
raise ValueError('Can only call this function on Guess instances')
for prop in other:
13 years ago
if prop in self and self.confidence(prop) >= other.confidence(prop):
continue
self[prop] = other[prop]
13 years ago
self._confidence[prop] = other.confidence(prop)
def choose_int(g1, g2):
13 years ago
"""Function used by merge_similar_guesses to choose between 2 possible
properties when they are integers."""
v1, c1 = g1 # value, confidence
v2, c2 = g2
if (v1 == v2):
13 years ago
return (v1, 1 - (1 - c1) * (1 - c2))
else:
if c1 > c2:
return (v1, c1 - c2)
else:
return (v2, c2 - c1)
13 years ago
def choose_string(g1, g2):
13 years ago
"""Function used by merge_similar_guesses to choose between 2 possible
properties when they are strings.
If the 2 strings are similar, or one is contained in the other, the latter is returned
with an increased confidence.
If the 2 strings are dissimilar, the one with the higher confidence is returned, with
a weaker confidence.
Note that here, 'similar' means that 2 strings are either equal, or that they
differ very little, such as one string being the other one with the 'the' word
prepended to it.
13 years ago
>>> s(choose_string(('Hello', 0.75), ('World', 0.5)))
('Hello', 0.25)
13 years ago
>>> s(choose_string(('Hello', 0.5), ('hello', 0.5)))
('Hello', 0.75)
13 years ago
>>> s(choose_string(('Hello', 0.4), ('Hello World', 0.4)))
13 years ago
('Hello', 0.64)
13 years ago
>>> s(choose_string(('simpsons', 0.5), ('The Simpsons', 0.5)))
('The Simpsons', 0.75)
"""
v1, c1 = g1 # value, confidence
v2, c2 = g2
if not v1:
return g2
elif not v2:
return g1
v1, v2 = v1.strip(), v2.strip()
v1l, v2l = v1.lower(), v2.lower()
13 years ago
combined_prob = 1 - (1 - c1) * (1 - c2)
if v1l == v2l:
return (v1, combined_prob)
# check for common patterns
elif v1l == 'the ' + v2l:
return (v1, combined_prob)
elif v2l == 'the ' + v1l:
return (v2, combined_prob)
# if one string is contained in the other, return the shortest one
elif v2l in v1l:
return (v2, combined_prob)
elif v1l in v2l:
return (v1, combined_prob)
# in case of conflict, return the one with highest priority
else:
if c1 > c2:
return (v1, c1 - c2)
else:
return (v2, c2 - c1)
def _merge_similar_guesses_nocheck(guesses, prop, choose):
"""Take a list of guesses and merge those which have the same properties,
increasing or decreasing the confidence depending on whether their values
are similar.
This function assumes there are at least 2 valid guesses."""
13 years ago
similar = [guess for guess in guesses if prop in guess]
g1, g2 = similar[0], similar[1]
other_props = set(g1) & set(g2) - set([prop])
if other_props:
13 years ago
log.debug('guess 1: %s' % g1)
log.debug('guess 2: %s' % g2)
for prop in other_props:
if g1[prop] != g2[prop]:
13 years ago
log.warning('both guesses to be merged have more than one '
'different property in common, bailing out...')
return
13 years ago
# merge all props of s2 into s1, updating the confidence for the
# considered property
v1, v2 = g1[prop], g2[prop]
c1, c2 = g1.confidence(prop), g2.confidence(prop)
new_value, new_confidence = choose((v1, c1), (v2, c2))
if new_confidence >= c1:
13 years ago
msg = "Updating matching property '%s' with confidence %.2f"
else:
13 years ago
msg = "Updating non-matching property '%s' with confidence %.2f"
log.debug(msg % (prop, new_confidence))
g2[prop] = new_value
g2.set_confidence(prop, new_confidence)
g1.update(g2)
guesses.remove(g2)
13 years ago
def merge_similar_guesses(guesses, prop, choose):
"""Take a list of guesses and merge those which have the same properties,
increasing or decreasing the confidence depending on whether their values
are similar."""
13 years ago
similar = [guess for guess in guesses if prop in guess]
if len(similar) < 2:
# nothing to merge
return
if len(similar) == 2:
_merge_similar_guesses_nocheck(guesses, prop, choose)
if len(similar) > 2:
log.debug('complex merge, trying our best...')
13 years ago
before = len(guesses)
_merge_similar_guesses_nocheck(guesses, prop, choose)
13 years ago
after = len(guesses)
if after < before:
# recurse only when the previous call actually did something,
# otherwise we end up in an infinite loop
merge_similar_guesses(guesses, prop, choose)
def merge_append_guesses(guesses, prop):
"""Take a list of guesses and merge those which have the same properties by
appending them in a list.
DEPRECATED, remove with old guessers
"""
13 years ago
similar = [guess for guess in guesses if prop in guess]
if not similar:
return
merged = similar[0]
13 years ago
merged[prop] = [merged[prop]]
# TODO: what to do with global confidence? mean of them all?
for m in similar[1:]:
for prop2 in m:
if prop == prop2:
merged[prop].append(m[prop])
else:
if prop2 in m:
13 years ago
log.warning('overwriting property "%s" with value %s' % (prop2, m[prop2]))
merged[prop2] = m[prop2]
# TODO: confidence also
guesses.remove(m)
13 years ago
def merge_all(guesses, append=None):
"""Merge all the guesses in a single result, remove very unlikely values,
and return it.
You can specify a list of properties that should be appended into a list
instead of being merged.
13 years ago
>>> s(merge_all([ Guess({ 'season': 2 }, confidence = 0.6),
... Guess({ 'episodeNumber': 13 }, confidence = 0.8) ]))
{'season': 2, 'episodeNumber': 13}
13 years ago
>>> s(merge_all([ Guess({ 'episodeNumber': 27 }, confidence = 0.02),
... Guess({ 'season': 1 }, confidence = 0.2) ]))
{'season': 1}
"""
if not guesses:
return Guess()
result = guesses[0]
13 years ago
if append is None:
append = []
for g in guesses[1:]:
# first append our appendable properties
for prop in append:
if prop in g:
13 years ago
result.set(prop, result.get(prop, []) + [g[prop]],
# TODO: what to do with confidence here? maybe an
# arithmetic mean...
confidence=g.confidence(prop))
del g[prop]
# then merge the remaining ones
13 years ago
dups = set(result) & set(g)
if dups:
log.warning('duplicate properties %s in merged result...' % dups)
result.update_highest_confidence(g)
# delete very unlikely values
13 years ago
for p in list(result.keys()):
if result.confidence(p) < 0.05:
del result[p]
# make sure our appendable properties contain unique values
for prop in append:
if prop in result:
result[prop] = list(set(result[prop]))
return result