# sql/elements.py # Copyright (C) 2005-2014 the SQLAlchemy authors and contributors # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Core SQL expression elements, including :class:`.ClauseElement`, :class:`.ColumnElement`, and derived classes. """ from __future__ import unicode_literals from .. import util, exc, inspection from . import type_api from . import operators from .visitors import Visitable, cloned_traverse, traverse from .annotation import Annotated import itertools from .base import Executable, PARSE_AUTOCOMMIT, Immutable, NO_ARG from .base import _generative, Generative import re import operator def _clone(element, **kw): return element._clone() def collate(expression, collation): """Return the clause ``expression COLLATE collation``. e.g.:: collate(mycolumn, 'utf8_bin') produces:: mycolumn COLLATE utf8_bin """ expr = _literal_as_binds(expression) return BinaryExpression( expr, _literal_as_text(collation), operators.collate, type_=expr.type) def between(ctest, cleft, cright): """Return a ``BETWEEN`` predicate clause. Equivalent of SQL ``clausetest BETWEEN clauseleft AND clauseright``. The :func:`between()` method on all :class:`.ColumnElement` subclasses provides similar functionality. """ ctest = _literal_as_binds(ctest) return ctest.between(cleft, cright) def literal(value, type_=None): """Return a literal clause, bound to a bind parameter. Literal clauses are created automatically when non- :class:`.ClauseElement` objects (such as strings, ints, dates, etc.) are used in a comparison operation with a :class:`.ColumnElement` subclass, such as a :class:`~sqlalchemy.schema.Column` object. Use this function to force the generation of a literal clause, which will be created as a :class:`BindParameter` with a bound value. :param value: the value to be bound. Can be any Python object supported by the underlying DB-API, or is translatable via the given type argument. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` which will provide bind-parameter translation for this literal. """ return BindParameter(None, value, type_=type_, unique=True) def type_coerce(expression, type_): """Coerce the given expression into the given type, on the Python side only. :func:`.type_coerce` is roughly similar to :func:`.cast`, except no "CAST" expression is rendered - the given type is only applied towards expression typing and against received result values. e.g.:: from sqlalchemy.types import TypeDecorator import uuid class AsGuid(TypeDecorator): impl = String def process_bind_param(self, value, dialect): if value is not None: return str(value) else: return None def process_result_value(self, value, dialect): if value is not None: return uuid.UUID(value) else: return None conn.execute( select([type_coerce(mytable.c.ident, AsGuid)]).\\ where( type_coerce(mytable.c.ident, AsGuid) == uuid.uuid3(uuid.NAMESPACE_URL, 'bar') ) ) :param expression: Column-oriented expression. :param type_: A :class:`.TypeEngine` class or instance indicating the type to which the CAST should apply. .. seealso:: :func:`.cast` """ type_ = type_api.to_instance(type_) if hasattr(expression, '__clause_element__'): return type_coerce(expression.__clause_element__(), type_) elif isinstance(expression, BindParameter): bp = expression._clone() bp.type = type_ return bp elif not isinstance(expression, Visitable): if expression is None: return Null() else: return literal(expression, type_=type_) else: return Label(None, expression, type_=type_) def outparam(key, type_=None): """Create an 'OUT' parameter for usage in functions (stored procedures), for databases which support them. The ``outparam`` can be used like a regular function parameter. The "output" value will be available from the :class:`~sqlalchemy.engine.ResultProxy` object via its ``out_parameters`` attribute, which returns a dictionary containing the values. """ return BindParameter( key, None, type_=type_, unique=False, isoutparam=True) def not_(clause): """Return a negation of the given clause, i.e. ``NOT(clause)``. The ``~`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ return operators.inv(_literal_as_binds(clause)) @inspection._self_inspects class ClauseElement(Visitable): """Base class for elements of a programmatically constructed SQL expression. """ __visit_name__ = 'clause' _annotations = {} supports_execution = False _from_objects = [] bind = None _is_clone_of = None is_selectable = False is_clause_element = True _order_by_label_element = None def _clone(self): """Create a shallow copy of this ClauseElement. This method may be used by a generative API. Its also used as part of the "deep" copy afforded by a traversal that combines the _copy_internals() method. """ c = self.__class__.__new__(self.__class__) c.__dict__ = self.__dict__.copy() ClauseElement._cloned_set._reset(c) ColumnElement.comparator._reset(c) # this is a marker that helps to "equate" clauses to each other # when a Select returns its list of FROM clauses. the cloning # process leaves around a lot of remnants of the previous clause # typically in the form of column expressions still attached to the # old table. c._is_clone_of = self return c @property def _constructor(self): """return the 'constructor' for this ClauseElement. This is for the purposes for creating a new object of this type. Usually, its just the element's __class__. However, the "Annotated" version of the object overrides to return the class of its proxied element. """ return self.__class__ @util.memoized_property def _cloned_set(self): """Return the set consisting all cloned ancestors of this ClauseElement. Includes this ClauseElement. This accessor tends to be used for FromClause objects to identify 'equivalent' FROM clauses, regardless of transformative operations. """ s = util.column_set() f = self while f is not None: s.add(f) f = f._is_clone_of return s def __getstate__(self): d = self.__dict__.copy() d.pop('_is_clone_of', None) return d def _annotate(self, values): """return a copy of this ClauseElement with annotations updated by the given dictionary. """ return Annotated(self, values) def _with_annotations(self, values): """return a copy of this ClauseElement with annotations replaced by the given dictionary. """ return Annotated(self, values) def _deannotate(self, values=None, clone=False): """return a copy of this :class:`.ClauseElement` with annotations removed. :param values: optional tuple of individual values to remove. """ if clone: # clone is used when we are also copying # the expression for a deep deannotation return self._clone() else: # if no clone, since we have no annotations we return # self return self def _execute_on_connection(self, connection, multiparams, params): return connection._execute_clauseelement(self, multiparams, params) def unique_params(self, *optionaldict, **kwargs): """Return a copy with :func:`bindparam()` elements replaced. Same functionality as ``params()``, except adds `unique=True` to affected bind parameters so that multiple statements can be used. """ return self._params(True, optionaldict, kwargs) def params(self, *optionaldict, **kwargs): """Return a copy with :func:`bindparam()` elements replaced. Returns a copy of this ClauseElement with :func:`bindparam()` elements replaced with values taken from the given dictionary:: >>> clause = column('x') + bindparam('foo') >>> print clause.compile().params {'foo':None} >>> print clause.params({'foo':7}).compile().params {'foo':7} """ return self._params(False, optionaldict, kwargs) def _params(self, unique, optionaldict, kwargs): if len(optionaldict) == 1: kwargs.update(optionaldict[0]) elif len(optionaldict) > 1: raise exc.ArgumentError( "params() takes zero or one positional dictionary argument") def visit_bindparam(bind): if bind.key in kwargs: bind.value = kwargs[bind.key] bind.required = False if unique: bind._convert_to_unique() return cloned_traverse(self, {}, {'bindparam': visit_bindparam}) def compare(self, other, **kw): """Compare this ClauseElement to the given ClauseElement. Subclasses should override the default behavior, which is a straight identity comparison. \**kw are arguments consumed by subclass compare() methods and may be used to modify the criteria for comparison. (see :class:`.ColumnElement`) """ return self is other def _copy_internals(self, clone=_clone, **kw): """Reassign internal elements to be clones of themselves. Called during a copy-and-traverse operation on newly shallow-copied elements to create a deep copy. The given clone function should be used, which may be applying additional transformations to the element (i.e. replacement traversal, cloned traversal, annotations). """ pass def get_children(self, **kwargs): """Return immediate child elements of this :class:`.ClauseElement`. This is used for visit traversal. \**kwargs may contain flags that change the collection that is returned, for example to return a subset of items in order to cut down on larger traversals, or to return child items from a different context (such as schema-level collections instead of clause-level). """ return [] def self_group(self, against=None): """Apply a 'grouping' to this :class:`.ClauseElement`. This method is overridden by subclasses to return a "grouping" construct, i.e. parenthesis. In particular it's used by "binary" expressions to provide a grouping around themselves when placed into a larger expression, as well as by :func:`.select` constructs when placed into the FROM clause of another :func:`.select`. (Note that subqueries should be normally created using the :meth:`.Select.alias` method, as many platforms require nested SELECT statements to be named). As expressions are composed together, the application of :meth:`self_group` is automatic - end-user code should never need to use this method directly. Note that SQLAlchemy's clause constructs take operator precedence into account - so parenthesis might not be needed, for example, in an expression like ``x OR (y AND z)`` - AND takes precedence over OR. The base :meth:`self_group` method of :class:`.ClauseElement` just returns self. """ return self @util.dependencies("sqlalchemy.engine.default") def compile(self, default, bind=None, dialect=None, **kw): """Compile this SQL expression. The return value is a :class:`~.Compiled` object. Calling ``str()`` or ``unicode()`` on the returned value will yield a string representation of the result. The :class:`~.Compiled` object also can return a dictionary of bind parameter names and values using the ``params`` accessor. :param bind: An ``Engine`` or ``Connection`` from which a ``Compiled`` will be acquired. This argument takes precedence over this :class:`.ClauseElement`'s bound engine, if any. :param column_keys: Used for INSERT and UPDATE statements, a list of column names which should be present in the VALUES clause of the compiled statement. If ``None``, all columns from the target table object are rendered. :param dialect: A ``Dialect`` instance from which a ``Compiled`` will be acquired. This argument takes precedence over the `bind` argument as well as this :class:`.ClauseElement`'s bound engine, if any. :param inline: Used for INSERT statements, for a dialect which does not support inline retrieval of newly generated primary key columns, will force the expression used to create the new primary key value to be rendered inline within the INSERT statement's VALUES clause. This typically refers to Sequence execution but may also refer to any server-side default generation function associated with a primary key `Column`. """ if not dialect: if bind: dialect = bind.dialect elif self.bind: dialect = self.bind.dialect bind = self.bind else: dialect = default.DefaultDialect() return self._compiler(dialect, bind=bind, **kw) def _compiler(self, dialect, **kw): """Return a compiler appropriate for this ClauseElement, given a Dialect.""" return dialect.statement_compiler(dialect, self, **kw) def __str__(self): if util.py3k: return str(self.compile()) else: return unicode(self.compile()).encode('ascii', 'backslashreplace') def __and__(self, other): return and_(self, other) def __or__(self, other): return or_(self, other) def __invert__(self): if hasattr(self, 'negation_clause'): return self.negation_clause else: return self._negate() def __bool__(self): raise TypeError("Boolean value of this clause is not defined") __nonzero__ = __bool__ def _negate(self): return UnaryExpression( self.self_group(against=operators.inv), operator=operators.inv, negate=None) def __repr__(self): friendly = getattr(self, 'description', None) if friendly is None: return object.__repr__(self) else: return '<%s.%s at 0x%x; %s>' % ( self.__module__, self.__class__.__name__, id(self), friendly) class ColumnElement(ClauseElement, operators.ColumnOperators): """Represent a column-oriented SQL expression suitable for usage in the "columns" clause, WHERE clause etc. of a statement. While the most familiar kind of :class:`.ColumnElement` is the :class:`.Column` object, :class:`.ColumnElement` serves as the basis for any unit that may be present in a SQL expression, including the expressions themselves, SQL functions, bound parameters, literal expressions, keywords such as ``NULL``, etc. :class:`.ColumnElement` is the ultimate base class for all such elements. A :class:`.ColumnElement` provides the ability to generate new :class:`.ColumnElement` objects using Python expressions. This means that Python operators such as ``==``, ``!=`` and ``<`` are overloaded to mimic SQL operations, and allow the instantiation of further :class:`.ColumnElement` instances which are composed from other, more fundamental :class:`.ColumnElement` objects. For example, two :class:`.ColumnClause` objects can be added together with the addition operator ``+`` to produce a :class:`.BinaryExpression`. Both :class:`.ColumnClause` and :class:`.BinaryExpression` are subclasses of :class:`.ColumnElement`:: >>> from sqlalchemy.sql import column >>> column('a') + column('b') >>> print column('a') + column('b') a + b :class:`.ColumnElement` supports the ability to be a *proxy* element, which indicates that the :class:`.ColumnElement` may be associated with a :class:`.Selectable` which was derived from another :class:`.Selectable`. An example of a "derived" :class:`.Selectable` is an :class:`.Alias` of a :class:`~sqlalchemy.schema.Table`. For the ambitious, an in-depth discussion of this concept can be found at `Expression Transformations `_. """ __visit_name__ = 'column' primary_key = False foreign_keys = [] _label = None _key_label = None _alt_names = () def self_group(self, against=None): if against in (operators.and_, operators.or_, operators._asbool) and \ self.type._type_affinity is type_api.BOOLEANTYPE._type_affinity: return AsBoolean(self, operators.istrue, operators.isfalse) else: return self def _negate(self): if self.type._type_affinity is type_api.BOOLEANTYPE._type_affinity: return AsBoolean(self, operators.isfalse, operators.istrue) else: return super(ColumnElement, self)._negate() @util.memoized_property def type(self): return type_api.NULLTYPE @util.memoized_property def comparator(self): return self.type.comparator_factory(self) def __getattr__(self, key): try: return getattr(self.comparator, key) except AttributeError: raise AttributeError( 'Neither %r object nor %r object has an attribute %r' % ( type(self).__name__, type(self.comparator).__name__, key) ) def operate(self, op, *other, **kwargs): return op(self.comparator, *other, **kwargs) def reverse_operate(self, op, other, **kwargs): return op(other, self.comparator, **kwargs) def _bind_param(self, operator, obj): return BindParameter(None, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) @property def expression(self): """Return a column expression. Part of the inspection interface; returns self. """ return self @property def _select_iterable(self): return (self, ) @util.memoized_property def base_columns(self): return util.column_set(c for c in self.proxy_set if not hasattr(c, '_proxies')) @util.memoized_property def proxy_set(self): s = util.column_set([self]) if hasattr(self, '_proxies'): for c in self._proxies: s.update(c.proxy_set) return s def shares_lineage(self, othercolumn): """Return True if the given :class:`.ColumnElement` has a common ancestor to this :class:`.ColumnElement`.""" return bool(self.proxy_set.intersection(othercolumn.proxy_set)) def _compare_name_for_result(self, other): """Return True if the given column element compares to this one when targeting within a result row.""" return hasattr(other, 'name') and hasattr(self, 'name') and \ other.name == self.name def _make_proxy(self, selectable, name=None, name_is_truncatable=False, **kw): """Create a new :class:`.ColumnElement` representing this :class:`.ColumnElement` as it appears in the select list of a descending selectable. """ if name is None: name = self.anon_label try: key = str(self) except exc.UnsupportedCompilationError: key = self.anon_label else: key = name co = ColumnClause( _as_truncated(name) if name_is_truncatable else name, type_=getattr(self, 'type', None), _selectable=selectable ) co._proxies = [self] if selectable._is_clone_of is not None: co._is_clone_of = \ selectable._is_clone_of.columns.get(key) selectable._columns[key] = co return co def compare(self, other, use_proxies=False, equivalents=None, **kw): """Compare this ColumnElement to another. Special arguments understood: :param use_proxies: when True, consider two columns that share a common base column as equivalent (i.e. shares_lineage()) :param equivalents: a dictionary of columns as keys mapped to sets of columns. If the given "other" column is present in this dictionary, if any of the columns in the corresponding set() pass the comparison test, the result is True. This is used to expand the comparison to other columns that may be known to be equivalent to this one via foreign key or other criterion. """ to_compare = (other, ) if equivalents and other in equivalents: to_compare = equivalents[other].union(to_compare) for oth in to_compare: if use_proxies and self.shares_lineage(oth): return True elif hash(oth) == hash(self): return True else: return False def label(self, name): """Produce a column label, i.e. `` AS ``. This is a shortcut to the :func:`~.expression.label` function. if 'name' is None, an anonymous label name will be generated. """ return Label(name, self, self.type) @util.memoized_property def anon_label(self): """provides a constant 'anonymous label' for this ColumnElement. This is a label() expression which will be named at compile time. The same label() is returned each time anon_label is called so that expressions can reference anon_label multiple times, producing the same label name at compile time. the compiler uses this function automatically at compile time for expressions that are known to be 'unnamed' like binary expressions and function calls. """ return _anonymous_label('%%(%d %s)s' % (id(self), getattr(self, 'name', 'anon'))) class BindParameter(ColumnElement): """Represent a bound parameter value. """ __visit_name__ = 'bindparam' _is_crud = False def __init__(self, key, value=NO_ARG, type_=None, unique=False, required=NO_ARG, quote=None, callable_=None, isoutparam=False, _compared_to_operator=None, _compared_to_type=None): """Construct a new :class:`.BindParameter`. :param key: the key for this bind param. Will be used in the generated SQL statement for dialects that use named parameters. This value may be modified when part of a compilation operation, if other :class:`BindParameter` objects exist with the same key, or if its length is too long and truncation is required. :param value: Initial value for this bind param. This value may be overridden by the dictionary of parameters sent to statement compilation/execution. Defaults to ``None``, however if neither ``value`` nor ``callable`` are passed explicitly, the ``required`` flag will be set to ``True`` which has the effect of requiring a value be present when the statement is actually executed. .. versionchanged:: 0.8 The ``required`` flag is set to ``True`` automatically if ``value`` or ``callable`` is not passed. :param callable\_: A callable function that takes the place of "value". The function will be called at statement execution time to determine the ultimate value. Used for scenarios where the actual bind value cannot be determined at the point at which the clause construct is created, but embedded bind values are still desirable. :param type\_: A ``TypeEngine`` object that will be used to pre-process the value corresponding to this :class:`BindParameter` at execution time. :param unique: if True, the key name of this BindParamClause will be modified if another :class:`BindParameter` of the same name already has been located within the containing :class:`.ClauseElement`. :param required: If ``True``, a value is required at execution time. If not passed, is set to ``True`` or ``False`` based on whether or not one of ``value`` or ``callable`` were passed.. .. versionchanged:: 0.8 If the ``required`` flag is not specified, it will be set automatically to ``True`` or ``False`` depending on whether or not the ``value`` or ``callable`` parameters were specified. :param quote: True if this parameter name requires quoting and is not currently known as a SQLAlchemy reserved word; this currently only applies to the Oracle backend. :param isoutparam: if True, the parameter should be treated like a stored procedure "OUT" parameter. .. seealso:: :func:`.outparam` """ if isinstance(key, ColumnClause): type_ = key.type key = key.name if required is NO_ARG: required = (value is NO_ARG and callable_ is None) if value is NO_ARG: value = None if quote is not None: key = quoted_name(key, quote) if unique: self.key = _anonymous_label('%%(%d %s)s' % (id(self), key or 'param')) else: self.key = key or _anonymous_label('%%(%d param)s' % id(self)) # identifying key that won't change across # clones, used to identify the bind's logical # identity self._identifying_key = self.key # key that was passed in the first place, used to # generate new keys self._orig_key = key or 'param' self.unique = unique self.value = value self.callable = callable_ self.isoutparam = isoutparam self.required = required if type_ is None: if _compared_to_type is not None: self.type = \ _compared_to_type.coerce_compared_value( _compared_to_operator, value) else: self.type = type_api._type_map.get(type(value), type_api.NULLTYPE) elif isinstance(type_, type): self.type = type_() else: self.type = type_ def _with_value(self, value): """Return a copy of this :class:`.BindParameter` with the given value set.""" cloned = self._clone() cloned.value = value cloned.callable = None cloned.required = False if cloned.type is type_api.NULLTYPE: cloned.type = type_api._type_map.get(type(value), type_api.NULLTYPE) return cloned @property def effective_value(self): """Return the value of this bound parameter, taking into account if the ``callable`` parameter was set. The ``callable`` value will be evaluated and returned if present, else ``value``. """ if self.callable: return self.callable() else: return self.value def _clone(self): c = ClauseElement._clone(self) if self.unique: c.key = _anonymous_label('%%(%d %s)s' % (id(c), c._orig_key or 'param')) return c def _convert_to_unique(self): if not self.unique: self.unique = True self.key = _anonymous_label('%%(%d %s)s' % (id(self), self._orig_key or 'param')) def compare(self, other, **kw): """Compare this :class:`BindParameter` to the given clause.""" return isinstance(other, BindParameter) \ and self.type._compare_type_affinity(other.type) \ and self.value == other.value def __getstate__(self): """execute a deferred value for serialization purposes.""" d = self.__dict__.copy() v = self.value if self.callable: v = self.callable() d['callable'] = None d['value'] = v return d def __repr__(self): return 'BindParameter(%r, %r, type_=%r)' % (self.key, self.value, self.type) class TypeClause(ClauseElement): """Handle a type keyword in a SQL statement. Used by the ``Case`` statement. """ __visit_name__ = 'typeclause' def __init__(self, type): self.type = type class TextClause(Executable, ClauseElement): """Represent a literal SQL text fragment. Public constructor is the :func:`text()` function. """ __visit_name__ = 'textclause' _bind_params_regex = re.compile(r'(?`` to specify bind parameters; they will be compiled to their engine-specific format. :param autocommit: Deprecated. Use .execution_options(autocommit=) to set the autocommit option. :param bind: an optional connection or engine to be used for this text query. :param bindparams: Deprecated. A list of :func:`.bindparam` instances used to provide information about parameters embedded in the statement. This argument now invokes the :meth:`.TextClause.bindparams` method on the construct before returning it. E.g.:: stmt = text("SELECT * FROM table WHERE id=:id", bindparams=[bindparam('id', value=5, type_=Integer)]) Is equivalent to:: stmt = text("SELECT * FROM table WHERE id=:id").\\ bindparams(bindparam('id', value=5, type_=Integer)) .. deprecated:: 0.9.0 the :meth:`.TextClause.bindparams` method supersedes the ``bindparams`` argument to :func:`.text`. :param typemap: Deprecated. A dictionary mapping the names of columns represented in the columns clause of a ``SELECT`` statement to type objects, which will be used to perform post-processing on columns within the result set. This parameter now invokes the :meth:`.TextClause.columns` method, which returns a :class:`.TextAsFrom` construct that gains a ``.c`` collection and can be embedded in other expressions. E.g.:: stmt = text("SELECT * FROM table", typemap={'id': Integer, 'name': String}, ) Is equivalent to:: stmt = text("SELECT * FROM table").columns(id=Integer, name=String) Or alternatively:: from sqlalchemy.sql import column stmt = text("SELECT * FROM table").columns( column('id', Integer), column('name', String) ) .. deprecated:: 0.9.0 the :meth:`.TextClause.columns` method supersedes the ``typemap`` argument to :func:`.text`. """ stmt = TextClause(text, bind=bind) if bindparams: stmt = stmt.bindparams(*bindparams) if typemap: stmt = stmt.columns(**typemap) if autocommit is not None: util.warn_deprecated('autocommit on text() is deprecated. ' 'Use .execution_options(autocommit=True)') stmt = stmt.execution_options(autocommit=autocommit) return stmt @_generative def bindparams(self, *binds, **names_to_values): """Establish the values and/or types of bound parameters within this :class:`.TextClause` construct. Given a text construct such as:: from sqlalchemy import text stmt = text("SELECT id, name FROM user WHERE name=:name " "AND timestamp=:timestamp") the :meth:`.TextClause.bindparams` method can be used to establish the initial value of ``:name`` and ``:timestamp``, using simple keyword arguments:: stmt = stmt.bindparams(name='jack', timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5)) Where above, new :class:`.BindParameter` objects will be generated with the names ``name`` and ``timestamp``, and values of ``jack`` and ``datetime.datetime(2012, 10, 8, 15, 12, 5)``, respectively. The types will be inferred from the values given, in this case :class:`.String` and :class:`.DateTime`. When specific typing behavior is needed, the positional ``*binds`` argument can be used in which to specify :func:`.bindparam` constructs directly. These constructs must include at least the ``key`` argument, then an optional value and type:: from sqlalchemy import bindparam stmt = stmt.bindparams( bindparam('name', value='jack', type_=String), bindparam('timestamp', type_=DateTime) ) Above, we specified the type of :class:`.DateTime` for the ``timestamp`` bind, and the type of :class:`.String` for the ``name`` bind. In the case of ``name`` we also set the default value of ``"jack"``. Additional bound parameters can be supplied at statement execution time, e.g.:: result = connection.execute(stmt, timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5)) The :meth:`.TextClause.bindparams` method can be called repeatedly, where it will re-use existing :class:`.BindParameter` objects to add new information. For example, we can call :meth:`.TextClause.bindparams` first with typing information, and a second time with value information, and it will be combined:: stmt = text("SELECT id, name FROM user WHERE name=:name " "AND timestamp=:timestamp") stmt = stmt.bindparams( bindparam('name', type_=String), bindparam('timestamp', type_=DateTime) ) stmt = stmt.bindparams( name='jack', timestamp=datetime.datetime(2012, 10, 8, 15, 12, 5) ) .. versionadded:: 0.9.0 The :meth:`.TextClause.bindparams` method supersedes the argument ``bindparams`` passed to :func:`~.expression.text`. """ self._bindparams = new_params = self._bindparams.copy() for bind in binds: try: existing = new_params[bind.key] except KeyError: raise exc.ArgumentError( "This text() construct doesn't define a " "bound parameter named %r" % bind.key) else: new_params[existing.key] = bind for key, value in names_to_values.items(): try: existing = new_params[key] except KeyError: raise exc.ArgumentError( "This text() construct doesn't define a " "bound parameter named %r" % key) else: new_params[key] = existing._with_value(value) @util.dependencies('sqlalchemy.sql.selectable') def columns(self, selectable, *cols, **types): """Turn this :class:`.TextClause` object into a :class:`.TextAsFrom` object that can be embedded into another statement. This function essentially bridges the gap between an entirely textual SELECT statement and the SQL expression language concept of a "selectable":: from sqlalchemy.sql import column, text stmt = text("SELECT id, name FROM some_table") stmt = stmt.columns(column('id'), column('name')).alias('st') stmt = select([mytable]).\\ select_from( mytable.join(stmt, mytable.c.name == stmt.c.name) ).where(stmt.c.id > 5) Above, we used untyped :func:`.column` elements. These can also have types specified, which will impact how the column behaves in expressions as well as determining result set behavior:: stmt = text("SELECT id, name, timestamp FROM some_table") stmt = stmt.columns( column('id', Integer), column('name', Unicode), column('timestamp', DateTime) ) for id, name, timestamp in connection.execute(stmt): print(id, name, timestamp) Keyword arguments allow just the names and types of columns to be specified, where the :func:`.column` elements will be generated automatically:: stmt = text("SELECT id, name, timestamp FROM some_table") stmt = stmt.columns( id=Integer, name=Unicode, timestamp=DateTime ) for id, name, timestamp in connection.execute(stmt): print(id, name, timestamp) The :meth:`.TextClause.columns` method provides a direct route to calling :meth:`.FromClause.alias` as well as :meth:`.SelectBase.cte` against a textual SELECT statement:: stmt = stmt.columns(id=Integer, name=String).cte('st') stmt = select([sometable]).where(sometable.c.id == stmt.c.id) .. versionadded:: 0.9.0 :func:`.text` can now be converted into a fully featured "selectable" construct using the :meth:`.TextClause.columns` method. This method supersedes the ``typemap`` argument to :func:`.text`. """ col_by_name = dict( (col.key, col) for col in cols ) for key, type_ in types.items(): col_by_name[key] = ColumnClause(key, type_) return selectable.TextAsFrom(self, list(col_by_name.values())) @property def type(self): return type_api.NULLTYPE @property def comparator(self): return self.type.comparator_factory(self) def self_group(self, against=None): if against is operators.in_op: return Grouping(self) else: return self def _copy_internals(self, clone=_clone, **kw): self._bindparams = dict((b.key, clone(b, **kw)) for b in self._bindparams.values()) def get_children(self, **kwargs): return list(self._bindparams.values()) class Null(ColumnElement): """Represent the NULL keyword in a SQL statement. :class:`.Null` is accessed as a constant via the :func:`.null` function. """ __visit_name__ = 'null' @util.memoized_property def type(self): return type_api.NULLTYPE @classmethod def _singleton(cls): """Return a constant :class:`.Null` construct.""" return NULL def compare(self, other): return isinstance(other, Null) class False_(ColumnElement): """Represent the ``false`` keyword, or equivalent, in a SQL statement. :class:`.False_` is accessed as a constant via the :func:`.false` function. """ __visit_name__ = 'false' @util.memoized_property def type(self): return type_api.BOOLEANTYPE def _negate(self): return TRUE @classmethod def _singleton(cls): """Return a constant :class:`.False_` construct. E.g.:: >>> from sqlalchemy import false >>> print select([t.c.x]).where(false()) SELECT x FROM t WHERE false A backend which does not support true/false constants will render as an expression against 1 or 0:: >>> print select([t.c.x]).where(false()) SELECT x FROM t WHERE 0 = 1 The :func:`.true` and :func:`.false` constants also feature "short circuit" operation within an :func:`.and_` or :func:`.or_` conjunction:: >>> print select([t.c.x]).where(or_(t.c.x > 5, true())) SELECT x FROM t WHERE true >>> print select([t.c.x]).where(and_(t.c.x > 5, false())) SELECT x FROM t WHERE false .. versionchanged:: 0.9 :func:`.true` and :func:`.false` feature better integrated behavior within conjunctions and on dialects that don't support true/false constants. .. seealso:: :func:`.true` """ return FALSE def compare(self, other): return isinstance(other, False_) class True_(ColumnElement): """Represent the ``true`` keyword, or equivalent, in a SQL statement. :class:`.True_` is accessed as a constant via the :func:`.true` function. """ __visit_name__ = 'true' @util.memoized_property def type(self): return type_api.BOOLEANTYPE def _negate(self): return FALSE @classmethod def _ifnone(cls, other): if other is None: return cls._singleton() else: return other @classmethod def _singleton(cls): """Return a constant :class:`.True_` construct. E.g.:: >>> from sqlalchemy import true >>> print select([t.c.x]).where(true()) SELECT x FROM t WHERE true A backend which does not support true/false constants will render as an expression against 1 or 0:: >>> print select([t.c.x]).where(true()) SELECT x FROM t WHERE 1 = 1 The :func:`.true` and :func:`.false` constants also feature "short circuit" operation within an :func:`.and_` or :func:`.or_` conjunction:: >>> print select([t.c.x]).where(or_(t.c.x > 5, true())) SELECT x FROM t WHERE true >>> print select([t.c.x]).where(and_(t.c.x > 5, false())) SELECT x FROM t WHERE false .. versionchanged:: 0.9 :func:`.true` and :func:`.false` feature better integrated behavior within conjunctions and on dialects that don't support true/false constants. .. seealso:: :func:`.false` """ return TRUE def compare(self, other): return isinstance(other, True_) NULL = Null() FALSE = False_() TRUE = True_() class ClauseList(ClauseElement): """Describe a list of clauses, separated by an operator. By default, is comma-separated, such as a column listing. """ __visit_name__ = 'clauselist' def __init__(self, *clauses, **kwargs): self.operator = kwargs.pop('operator', operators.comma_op) self.group = kwargs.pop('group', True) self.group_contents = kwargs.pop('group_contents', True) if self.group_contents: self.clauses = [ _literal_as_text(clause).self_group(against=self.operator) for clause in clauses] else: self.clauses = [ _literal_as_text(clause) for clause in clauses] def __iter__(self): return iter(self.clauses) def __len__(self): return len(self.clauses) @property def _select_iterable(self): return iter(self) def append(self, clause): if self.group_contents: self.clauses.append(_literal_as_text(clause).\ self_group(against=self.operator)) else: self.clauses.append(_literal_as_text(clause)) def _copy_internals(self, clone=_clone, **kw): self.clauses = [clone(clause, **kw) for clause in self.clauses] def get_children(self, **kwargs): return self.clauses @property def _from_objects(self): return list(itertools.chain(*[c._from_objects for c in self.clauses])) def self_group(self, against=None): if self.group and operators.is_precedent(self.operator, against): return Grouping(self) else: return self def compare(self, other, **kw): """Compare this :class:`.ClauseList` to the given :class:`.ClauseList`, including a comparison of all the clause items. """ if not isinstance(other, ClauseList) and len(self.clauses) == 1: return self.clauses[0].compare(other, **kw) elif isinstance(other, ClauseList) and \ len(self.clauses) == len(other.clauses): for i in range(0, len(self.clauses)): if not self.clauses[i].compare(other.clauses[i], **kw): return False else: return self.operator == other.operator else: return False class BooleanClauseList(ClauseList, ColumnElement): __visit_name__ = 'clauselist' def __init__(self, *arg, **kw): raise NotImplementedError( "BooleanClauseList has a private constructor") @classmethod def _construct(cls, operator, continue_on, skip_on, *clauses, **kw): convert_clauses = [] clauses = util.coerce_generator_arg(clauses) for clause in clauses: clause = _literal_as_text(clause) if isinstance(clause, continue_on): continue elif isinstance(clause, skip_on): return clause.self_group(against=operators._asbool) convert_clauses.append(clause) if len(convert_clauses) == 1: return convert_clauses[0].self_group(against=operators._asbool) elif not convert_clauses and clauses: return clauses[0].self_group(against=operators._asbool) convert_clauses = [c.self_group(against=operator) for c in convert_clauses] self = cls.__new__(cls) self.clauses = convert_clauses self.group = True self.operator = operator self.group_contents = True self.type = type_api.BOOLEANTYPE return self @classmethod def and_(cls, *clauses): """Join a list of clauses together using the ``AND`` operator. The ``&`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ return cls._construct(operators.and_, True_, False_, *clauses) @classmethod def or_(cls, *clauses): """Join a list of clauses together using the ``OR`` operator. The ``|`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ return cls._construct(operators.or_, False_, True_, *clauses) @property def _select_iterable(self): return (self, ) def self_group(self, against=None): if not self.clauses: return self else: return super(BooleanClauseList, self).self_group(against=against) def _negate(self): return ClauseList._negate(self) and_ = BooleanClauseList.and_ or_ = BooleanClauseList.or_ class Tuple(ClauseList, ColumnElement): """Represent a SQL tuple.""" def __init__(self, *clauses, **kw): """Return a :class:`.Tuple`. Main usage is to produce a composite IN construct:: from sqlalchemy import tuple_ tuple_(table.c.col1, table.c.col2).in_( [(1, 2), (5, 12), (10, 19)] ) .. warning:: The composite IN construct is not supported by all backends, and is currently known to work on Postgresql and MySQL, but not SQLite. Unsupported backends will raise a subclass of :class:`~sqlalchemy.exc.DBAPIError` when such an expression is invoked. """ clauses = [_literal_as_binds(c) for c in clauses] self.type = kw.pop('type_', None) if self.type is None: self.type = _type_from_args(clauses) super(Tuple, self).__init__(*clauses, **kw) @property def _select_iterable(self): return (self, ) def _bind_param(self, operator, obj): return Tuple(*[ BindParameter(None, o, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) for o in obj ]).self_group() class Case(ColumnElement): """Represent a SQL ``CASE`` construct. """ __visit_name__ = 'case' def __init__(self, whens, value=None, else_=None): """Produce a :class:`.Case` object. :param whens: A sequence of pairs, or alternatively a dict, to be translated into "WHEN / THEN" clauses. :param value: Optional for simple case statements, produces a column expression as in "CASE WHEN ..." :param else\_: Optional as well, for case defaults produces the "ELSE" portion of the "CASE" statement. The expressions used for THEN and ELSE, when specified as strings, will be interpreted as bound values. To specify textual SQL expressions for these, use the :func:`literal_column` construct. The expressions used for the WHEN criterion may only be literal strings when "value" is present, i.e. CASE table.somecol WHEN "x" THEN "y". Otherwise, literal strings are not accepted in this position, and either the text() or literal() constructs must be used to interpret raw string values. Usage examples:: case([(orderline.c.qty > 100, item.c.specialprice), (orderline.c.qty > 10, item.c.bulkprice) ], else_=item.c.regularprice) case(value=emp.c.type, whens={ 'engineer': emp.c.salary * 1.1, 'manager': emp.c.salary * 3, }) Using :func:`.literal_column()`, to allow for databases that do not support bind parameters in the ``then`` clause. The type can be specified which determines the type of the :func:`case()` construct overall:: case([(orderline.c.qty > 100, literal_column("'greaterthan100'", String)), (orderline.c.qty > 10, literal_column("'greaterthan10'", String)) ], else_=literal_column("'lethan10'", String)) """ try: whens = util.dictlike_iteritems(whens) except TypeError: pass if value is not None: whenlist = [ (_literal_as_binds(c).self_group(), _literal_as_binds(r)) for (c, r) in whens ] else: whenlist = [ (_no_literals(c).self_group(), _literal_as_binds(r)) for (c, r) in whens ] if whenlist: type_ = list(whenlist[-1])[-1].type else: type_ = None if value is None: self.value = None else: self.value = _literal_as_binds(value) self.type = type_ self.whens = whenlist if else_ is not None: self.else_ = _literal_as_binds(else_) else: self.else_ = None def _copy_internals(self, clone=_clone, **kw): if self.value is not None: self.value = clone(self.value, **kw) self.whens = [(clone(x, **kw), clone(y, **kw)) for x, y in self.whens] if self.else_ is not None: self.else_ = clone(self.else_, **kw) def get_children(self, **kwargs): if self.value is not None: yield self.value for x, y in self.whens: yield x yield y if self.else_ is not None: yield self.else_ @property def _from_objects(self): return list(itertools.chain(*[x._from_objects for x in self.get_children()])) def literal_column(text, type_=None): """Return a textual column expression, as would be in the columns clause of a ``SELECT`` statement. The object returned supports further expressions in the same way as any other column object, including comparison, math and string operations. The type\_ parameter is important to determine proper expression behavior (such as, '+' means string concatenation or numerical addition based on the type). :param text: the text of the expression; can be any SQL expression. Quoting rules will not be applied. To specify a column-name expression which should be subject to quoting rules, use the :func:`column` function. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` object which will provide result-set translation and additional expression semantics for this column. If left as None the type will be NullType. """ return ColumnClause(text, type_=type_, is_literal=True) class Cast(ColumnElement): """Represent the SQL ``CAST`` construct.""" __visit_name__ = 'cast' def __init__(self, expression, type_): """Return a :class:`.Cast` object. Equivalent of SQL ``CAST(clause AS totype)``. E.g.:: cast(table.c.unit_price * table.c.qty, Numeric(10,4)) or:: cast(table.c.timestamp, DATE) :param expression: Column-oriented expression. :param type_: A :class:`.TypeEngine` class or instance indicating the type to which the CAST should apply. .. seealso:: :func:`.type_coerce` - Python-side type coercion without emitting CAST. """ self.type = type_api.to_instance(type_) self.clause = _literal_as_binds(expression, type_=self.type) self.typeclause = TypeClause(self.type) def _copy_internals(self, clone=_clone, **kw): self.clause = clone(self.clause, **kw) self.typeclause = clone(self.typeclause, **kw) def get_children(self, **kwargs): return self.clause, self.typeclause @property def _from_objects(self): return self.clause._from_objects class Extract(ColumnElement): """Represent a SQL EXTRACT clause, ``extract(field FROM expr)``.""" __visit_name__ = 'extract' def __init__(self, field, expr, **kwargs): """Return a :class:`.Extract` construct. This is typically available as :func:`.extract` as well as ``func.extract`` from the :data:`.func` namespace. """ self.type = type_api.INTEGERTYPE self.field = field self.expr = _literal_as_binds(expr, None) def _copy_internals(self, clone=_clone, **kw): self.expr = clone(self.expr, **kw) def get_children(self, **kwargs): return self.expr, @property def _from_objects(self): return self.expr._from_objects class UnaryExpression(ColumnElement): """Define a 'unary' expression. A unary expression has a single column expression and an operator. The operator can be placed on the left (where it is called the 'operator') or right (where it is called the 'modifier') of the column expression. """ __visit_name__ = 'unary' def __init__(self, element, operator=None, modifier=None, type_=None, negate=None): self.operator = operator self.modifier = modifier self.element = element.self_group(against=self.operator or self.modifier) self.type = type_api.to_instance(type_) self.negate = negate @classmethod def _create_nullsfirst(cls, column): """Return a NULLS FIRST ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol).nullsfirst()) produces:: ORDER BY mycol DESC NULLS FIRST """ return UnaryExpression( _literal_as_text(column), modifier=operators.nullsfirst_op) @classmethod def _create_nullslast(cls, column): """Return a NULLS LAST ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol).nullslast()) produces:: ORDER BY mycol DESC NULLS LAST """ return UnaryExpression( _literal_as_text(column), modifier=operators.nullslast_op) @classmethod def _create_desc(cls, column): """Return a descending ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol)) produces:: ORDER BY mycol DESC """ return UnaryExpression( _literal_as_text(column), modifier=operators.desc_op) @classmethod def _create_asc(cls, column): """Return an ascending ``ORDER BY`` clause element. e.g.:: someselect.order_by(asc(table1.mycol)) produces:: ORDER BY mycol ASC """ return UnaryExpression( _literal_as_text(column), modifier=operators.asc_op) @classmethod def _create_distinct(cls, expr): """Return a ``DISTINCT`` clause. e.g.:: distinct(a) renders:: DISTINCT a """ expr = _literal_as_binds(expr) return UnaryExpression(expr, operator=operators.distinct_op, type_=expr.type) @util.memoized_property def _order_by_label_element(self): if self.modifier in (operators.desc_op, operators.asc_op): return self.element._order_by_label_element else: return None @property def _from_objects(self): return self.element._from_objects def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) def get_children(self, **kwargs): return self.element, def compare(self, other, **kw): """Compare this :class:`UnaryExpression` against the given :class:`.ClauseElement`.""" return ( isinstance(other, UnaryExpression) and self.operator == other.operator and self.modifier == other.modifier and self.element.compare(other.element, **kw) ) def _negate(self): if self.negate is not None: return UnaryExpression( self.element, operator=self.negate, negate=self.operator, modifier=self.modifier, type_=self.type) else: return ClauseElement._negate(self) def self_group(self, against=None): if self.operator and operators.is_precedent(self.operator, against): return Grouping(self) else: return self class AsBoolean(UnaryExpression): def __init__(self, element, operator, negate): self.element = element self.type = type_api.BOOLEANTYPE self.operator = operator self.negate = negate self.modifier = None def self_group(self, against=None): return self def _negate(self): return self.element._negate() class BinaryExpression(ColumnElement): """Represent an expression that is ``LEFT RIGHT``. A :class:`.BinaryExpression` is generated automatically whenever two column expressions are used in a Python binary expresion:: >>> from sqlalchemy.sql import column >>> column('a') + column('b') >>> print column('a') + column('b') a + b """ __visit_name__ = 'binary' def __init__(self, left, right, operator, type_=None, negate=None, modifiers=None): # allow compatibility with libraries that # refer to BinaryExpression directly and pass strings if isinstance(operator, util.string_types): operator = operators.custom_op(operator) self._orig = (left, right) self.left = left.self_group(against=operator) self.right = right.self_group(against=operator) self.operator = operator self.type = type_api.to_instance(type_) self.negate = negate if modifiers is None: self.modifiers = {} else: self.modifiers = modifiers def __bool__(self): if self.operator in (operator.eq, operator.ne): return self.operator(hash(self._orig[0]), hash(self._orig[1])) else: raise TypeError("Boolean value of this clause is not defined") __nonzero__ = __bool__ @property def is_comparison(self): return operators.is_comparison(self.operator) @property def _from_objects(self): return self.left._from_objects + self.right._from_objects def _copy_internals(self, clone=_clone, **kw): self.left = clone(self.left, **kw) self.right = clone(self.right, **kw) def get_children(self, **kwargs): return self.left, self.right def compare(self, other, **kw): """Compare this :class:`BinaryExpression` against the given :class:`BinaryExpression`.""" return ( isinstance(other, BinaryExpression) and self.operator == other.operator and ( self.left.compare(other.left, **kw) and self.right.compare(other.right, **kw) or ( operators.is_commutative(self.operator) and self.left.compare(other.right, **kw) and self.right.compare(other.left, **kw) ) ) ) def self_group(self, against=None): if operators.is_precedent(self.operator, against): return Grouping(self) else: return self def _negate(self): if self.negate is not None: return BinaryExpression( self.left, self.right, self.negate, negate=self.operator, type_=type_api.BOOLEANTYPE, modifiers=self.modifiers) else: return super(BinaryExpression, self)._negate() class Grouping(ColumnElement): """Represent a grouping within a column expression""" __visit_name__ = 'grouping' def __init__(self, element): self.element = element self.type = getattr(element, 'type', type_api.NULLTYPE) def self_group(self, against=None): return self @property def _label(self): return getattr(self.element, '_label', None) or self.anon_label def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) def get_children(self, **kwargs): return self.element, @property def _from_objects(self): return self.element._from_objects def __getattr__(self, attr): return getattr(self.element, attr) def __getstate__(self): return {'element': self.element, 'type': self.type} def __setstate__(self, state): self.element = state['element'] self.type = state['type'] def compare(self, other, **kw): return isinstance(other, Grouping) and \ self.element.compare(other.element) class Over(ColumnElement): """Represent an OVER clause. This is a special operator against a so-called "window" function, as well as any aggregate function, which produces results relative to the result set itself. It's supported only by certain database backends. """ __visit_name__ = 'over' order_by = None partition_by = None def __init__(self, func, partition_by=None, order_by=None): """Produce an :class:`.Over` object against a function. Used against aggregate or so-called "window" functions, for database backends that support window functions. E.g.:: from sqlalchemy import over over(func.row_number(), order_by='x') Would produce "ROW_NUMBER() OVER(ORDER BY x)". :param func: a :class:`.FunctionElement` construct, typically generated by :data:`~.expression.func`. :param partition_by: a column element or string, or a list of such, that will be used as the PARTITION BY clause of the OVER construct. :param order_by: a column element or string, or a list of such, that will be used as the ORDER BY clause of the OVER construct. This function is also available from the :data:`~.expression.func` construct itself via the :meth:`.FunctionElement.over` method. .. versionadded:: 0.7 """ self.func = func if order_by is not None: self.order_by = ClauseList(*util.to_list(order_by)) if partition_by is not None: self.partition_by = ClauseList(*util.to_list(partition_by)) @util.memoized_property def type(self): return self.func.type def get_children(self, **kwargs): return [c for c in (self.func, self.partition_by, self.order_by) if c is not None] def _copy_internals(self, clone=_clone, **kw): self.func = clone(self.func, **kw) if self.partition_by is not None: self.partition_by = clone(self.partition_by, **kw) if self.order_by is not None: self.order_by = clone(self.order_by, **kw) @property def _from_objects(self): return list(itertools.chain( *[c._from_objects for c in (self.func, self.partition_by, self.order_by) if c is not None] )) class Label(ColumnElement): """Represents a column label (AS). Represent a label, as typically applied to any column-level element using the ``AS`` sql keyword. """ __visit_name__ = 'label' def __init__(self, name, element, type_=None): """Return a :class:`Label` object for the given :class:`.ColumnElement`. A label changes the name of an element in the columns clause of a ``SELECT`` statement, typically via the ``AS`` SQL keyword. This functionality is more conveniently available via the :meth:`.ColumnElement.label` method on :class:`.ColumnElement`. :param name: label name :param obj: a :class:`.ColumnElement`. """ while isinstance(element, Label): element = element.element if name: self.name = name else: self.name = _anonymous_label('%%(%d %s)s' % (id(self), getattr(element, 'name', 'anon'))) self.key = self._label = self._key_label = self.name self._element = element self._type = type_ self._proxies = [element] def __reduce__(self): return self.__class__, (self.name, self._element, self._type) @util.memoized_property def _order_by_label_element(self): return self @util.memoized_property def type(self): return type_api.to_instance( self._type or getattr(self._element, 'type', None) ) @util.memoized_property def element(self): return self._element.self_group(against=operators.as_) def self_group(self, against=None): sub_element = self._element.self_group(against=against) if sub_element is not self._element: return Label(self.name, sub_element, type_=self._type) else: return self @property def primary_key(self): return self.element.primary_key @property def foreign_keys(self): return self.element.foreign_keys def get_children(self, **kwargs): return self.element, def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) @property def _from_objects(self): return self.element._from_objects def _make_proxy(self, selectable, name=None, **kw): e = self.element._make_proxy(selectable, name=name if name else self.name) e._proxies.append(self) if self._type is not None: e.type = self._type return e class ColumnClause(Immutable, ColumnElement): """Represents a generic column expression from any textual string. This includes columns associated with tables, aliases and select statements, but also any arbitrary text. May or may not be bound to an underlying :class:`.Selectable`. :class:`.ColumnClause` is constructed by itself typically via the :func:`~.expression.column` function. It may be placed directly into constructs such as :func:`.select` constructs:: from sqlalchemy.sql import column, select c1, c2 = column("c1"), column("c2") s = select([c1, c2]).where(c1==5) There is also a variant on :func:`~.expression.column` known as :func:`~.expression.literal_column` - the difference is that in the latter case, the string value is assumed to be an exact expression, rather than a column name, so that no quoting rules or similar are applied:: from sqlalchemy.sql import literal_column, select s = select([literal_column("5 + 7")]) :class:`.ColumnClause` can also be used in a table-like fashion by combining the :func:`~.expression.column` function with the :func:`~.expression.table` function, to produce a "lightweight" form of table metadata:: from sqlalchemy.sql import table, column user = table("user", column("id"), column("name"), column("description"), ) The above construct can be created in an ad-hoc fashion and is not associated with any :class:`.schema.MetaData`, unlike it's more full fledged :class:`.schema.Table` counterpart. """ __visit_name__ = 'column' onupdate = default = server_default = server_onupdate = None _memoized_property = util.group_expirable_memoized_property() def __init__(self, text, type_=None, is_literal=False, _selectable=None): """Construct a :class:`.ColumnClause` object. :param text: the text of the element. :param type: :class:`.types.TypeEngine` object which can associate this :class:`.ColumnClause` with a type. :param is_literal: if True, the :class:`.ColumnClause` is assumed to be an exact expression that will be delivered to the output with no quoting rules applied regardless of case sensitive settings. the :func:`literal_column()` function is usually used to create such a :class:`.ColumnClause`. :param text: the name of the column. Quoting rules will be applied to the clause like any other column name. For textual column constructs that are not to be quoted, use the :func:`literal_column` function. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` object which will provide result-set translation for this column. """ self.key = self.name = text self.table = _selectable self.type = type_api.to_instance(type_) self.is_literal = is_literal def _compare_name_for_result(self, other): if self.is_literal or \ self.table is None or \ not hasattr(other, 'proxy_set') or ( isinstance(other, ColumnClause) and other.is_literal ): return super(ColumnClause, self).\ _compare_name_for_result(other) else: return other.proxy_set.intersection(self.proxy_set) def _get_table(self): return self.__dict__['table'] def _set_table(self, table): self._memoized_property.expire_instance(self) self.__dict__['table'] = table table = property(_get_table, _set_table) @_memoized_property def _from_objects(self): t = self.table if t is not None: return [t] else: return [] @util.memoized_property def description(self): if util.py3k: return self.name else: return self.name.encode('ascii', 'backslashreplace') @_memoized_property def _key_label(self): if self.key != self.name: return self._gen_label(self.key) else: return self._label @_memoized_property def _label(self): return self._gen_label(self.name) def _gen_label(self, name): t = self.table if self.is_literal: return None elif t is not None and t.named_with_column: if getattr(t, 'schema', None): label = t.schema.replace('.', '_') + "_" + \ t.name + "_" + name else: label = t.name + "_" + name # propagate name quoting rules for labels. if getattr(name, "quote", None) is not None: if isinstance(label, quoted_name): label.quote = name.quote else: label = quoted_name(label, name.quote) elif getattr(t.name, "quote", None) is not None: # can't get this situation to occur, so let's # assert false on it for now assert not isinstance(label, quoted_name) label = quoted_name(label, t.name.quote) # ensure the label name doesn't conflict with that # of an existing column if label in t.c: _label = label counter = 1 while _label in t.c: _label = label + "_" + str(counter) counter += 1 label = _label return _as_truncated(label) else: return name def _bind_param(self, operator, obj): return BindParameter(self.name, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) def _make_proxy(self, selectable, name=None, attach=True, name_is_truncatable=False, **kw): # propagate the "is_literal" flag only if we are keeping our name, # otherwise its considered to be a label is_literal = self.is_literal and (name is None or name == self.name) c = self._constructor( _as_truncated(name or self.name) if \ name_is_truncatable else \ (name or self.name), type_=self.type, _selectable=selectable, is_literal=is_literal ) if name is None: c.key = self.key c._proxies = [self] if selectable._is_clone_of is not None: c._is_clone_of = \ selectable._is_clone_of.columns.get(c.key) if attach: selectable._columns[c.key] = c return c class _IdentifiedClause(Executable, ClauseElement): __visit_name__ = 'identified' _execution_options = \ Executable._execution_options.union({'autocommit': False}) def __init__(self, ident): self.ident = ident class SavepointClause(_IdentifiedClause): __visit_name__ = 'savepoint' class RollbackToSavepointClause(_IdentifiedClause): __visit_name__ = 'rollback_to_savepoint' class ReleaseSavepointClause(_IdentifiedClause): __visit_name__ = 'release_savepoint' class quoted_name(util.text_type): """Represent a SQL identifier combined with quoting preferences. :class:`.quoted_name` is a Python unicode/str subclass which represents a particular identifier name along with a ``quote`` flag. This ``quote`` flag, when set to ``True`` or ``False``, overrides automatic quoting behavior for this identifier in order to either unconditionally quote or to not quote the name. If left at its default of ``None``, quoting behavior is applied to the identifier on a per-backend basis based on an examination of the token itself. A :class:`.quoted_name` object with ``quote=True`` is also prevented from being modified in the case of a so-called "name normalize" option. Certain database backends, such as Oracle, Firebird, and DB2 "normalize" case-insensitive names as uppercase. The SQLAlchemy dialects for these backends convert from SQLAlchemy's lower-case-means-insensitive convention to the upper-case-means-insensitive conventions of those backends. The ``quote=True`` flag here will prevent this conversion from occurring to support an identifier that's quoted as all lower case against such a backend. The :class:`.quoted_name` object is normally created automatically when specifying the name for key schema constructs such as :class:`.Table`, :class:`.Column`, and others. The class can also be passed explicitly as the name to any function that receives a name which can be quoted. Such as to use the :meth:`.Engine.has_table` method with an unconditionally quoted name:: from sqlaclchemy import create_engine from sqlalchemy.sql.elements import quoted_name engine = create_engine("oracle+cx_oracle://some_dsn") engine.has_table(quoted_name("some_table", True)) The above logic will run the "has table" logic against the Oracle backend, passing the name exactly as ``"some_table"`` without converting to upper case. .. versionadded:: 0.9.0 """ def __new__(cls, value, quote): if value is None: return None # experimental - don't bother with quoted_name # if quote flag is None. doesn't seem to make any dent # in performance however # elif not sprcls and quote is None: # return value elif isinstance(value, cls) and ( quote is None or value.quote == quote ): return value self = super(quoted_name, cls).__new__(cls, value) self.quote = quote return self def __reduce__(self): return quoted_name, (util.text_type(self), self.quote) @util.memoized_instancemethod def lower(self): if self.quote: return self else: return util.text_type(self).lower() @util.memoized_instancemethod def upper(self): if self.quote: return self else: return util.text_type(self).upper() def __repr__(self): backslashed = self.encode('ascii', 'backslashreplace') if not util.py2k: backslashed = backslashed.decode('ascii') return "'%s'" % backslashed class _truncated_label(quoted_name): """A unicode subclass used to identify symbolic " "names that may require truncation.""" def __new__(cls, value, quote=None): quote = getattr(value, "quote", quote) #return super(_truncated_label, cls).__new__(cls, value, quote, True) return super(_truncated_label, cls).__new__(cls, value, quote) def __reduce__(self): return self.__class__, (util.text_type(self), self.quote) def apply_map(self, map_): return self # for backwards compatibility in case # someone is re-implementing the # _truncated_identifier() sequence in a custom # compiler _generated_label = _truncated_label class _anonymous_label(_truncated_label): """A unicode subclass used to identify anonymously generated names.""" def __add__(self, other): return _anonymous_label( quoted_name( util.text_type.__add__(self, util.text_type(other)), self.quote) ) def __radd__(self, other): return _anonymous_label( quoted_name( util.text_type.__add__(util.text_type(other), self), self.quote) ) def apply_map(self, map_): if self.quote is not None: # preserve quoting only if necessary return quoted_name(self % map_, self.quote) else: # else skip the constructor call return self % map_ def _as_truncated(value): """coerce the given value to :class:`._truncated_label`. Existing :class:`._truncated_label` and :class:`._anonymous_label` objects are passed unchanged. """ if isinstance(value, _truncated_label): return value else: return _truncated_label(value) def _string_or_unprintable(element): if isinstance(element, util.string_types): return element else: try: return str(element) except: return "unprintable element %r" % element def _expand_cloned(elements): """expand the given set of ClauseElements to be the set of all 'cloned' predecessors. """ return itertools.chain(*[x._cloned_set for x in elements]) def _select_iterables(elements): """expand tables into individual columns in the given list of column expressions. """ return itertools.chain(*[c._select_iterable for c in elements]) def _cloned_intersection(a, b): """return the intersection of sets a and b, counting any overlap between 'cloned' predecessors. The returned set is in terms of the entities present within 'a'. """ all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set(elem for elem in a if all_overlap.intersection(elem._cloned_set)) def _cloned_difference(a, b): all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set(elem for elem in a if not all_overlap.intersection(elem._cloned_set)) def _labeled(element): if not hasattr(element, 'name'): return element.label(None) else: return element def _is_column(col): """True if ``col`` is an instance of :class:`.ColumnElement`.""" return isinstance(col, ColumnElement) def _find_columns(clause): """locate Column objects within the given expression.""" cols = util.column_set() traverse(clause, {}, {'column': cols.add}) return cols # there is some inconsistency here between the usage of # inspect() vs. checking for Visitable and __clause_element__. # Ideally all functions here would derive from inspect(), # however the inspect() versions add significant callcount # overhead for critical functions like _interpret_as_column_or_from(). # Generally, the column-based functions are more performance critical # and are fine just checking for __clause_element__(). it's only # _interpret_as_from() where we'd like to be able to receive ORM entities # that have no defined namespace, hence inspect() is needed there. def _column_as_key(element): if isinstance(element, util.string_types): return element if hasattr(element, '__clause_element__'): element = element.__clause_element__() try: return element.key except AttributeError: return None def _clause_element_as_expr(element): if hasattr(element, '__clause_element__'): return element.__clause_element__() else: return element def _literal_as_text(element): if isinstance(element, Visitable): return element elif hasattr(element, '__clause_element__'): return element.__clause_element__() elif isinstance(element, util.string_types): return TextClause(util.text_type(element)) elif isinstance(element, (util.NoneType, bool)): return _const_expr(element) else: raise exc.ArgumentError( "SQL expression object or string expected." ) def _no_literals(element): if hasattr(element, '__clause_element__'): return element.__clause_element__() elif not isinstance(element, Visitable): raise exc.ArgumentError("Ambiguous literal: %r. Use the 'text()' " "function to indicate a SQL expression " "literal, or 'literal()' to indicate a " "bound value." % element) else: return element def _is_literal(element): return not isinstance(element, Visitable) and \ not hasattr(element, '__clause_element__') def _only_column_elements_or_none(element, name): if element is None: return None else: return _only_column_elements(element, name) def _only_column_elements(element, name): if hasattr(element, '__clause_element__'): element = element.__clause_element__() if not isinstance(element, ColumnElement): raise exc.ArgumentError( "Column-based expression object expected for argument " "'%s'; got: '%s', type %s" % (name, element, type(element))) return element def _literal_as_binds(element, name=None, type_=None): if hasattr(element, '__clause_element__'): return element.__clause_element__() elif not isinstance(element, Visitable): if element is None: return Null() else: return BindParameter(name, element, type_=type_, unique=True) else: return element def _interpret_as_column_or_from(element): if isinstance(element, Visitable): return element elif hasattr(element, '__clause_element__'): return element.__clause_element__() insp = inspection.inspect(element, raiseerr=False) if insp is None: if isinstance(element, (util.NoneType, bool)): return _const_expr(element) elif hasattr(insp, "selectable"): return insp.selectable return ColumnClause(str(element), is_literal=True) def _const_expr(element): if isinstance(element, (Null, False_, True_)): return element elif element is None: return Null() elif element is False: return False_() elif element is True: return True_() else: raise exc.ArgumentError( "Expected None, False, or True" ) def _type_from_args(args): for a in args: if not a.type._isnull: return a.type else: return type_api.NULLTYPE def _corresponding_column_or_error(fromclause, column, require_embedded=False): c = fromclause.corresponding_column(column, require_embedded=require_embedded) if c is None: raise exc.InvalidRequestError( "Given column '%s', attached to table '%s', " "failed to locate a corresponding column from table '%s'" % (column, getattr(column, 'table', None), fromclause.description) ) return c class AnnotatedColumnElement(Annotated): def __init__(self, element, values): Annotated.__init__(self, element, values) ColumnElement.comparator._reset(self) for attr in ('name', 'key', 'table'): if self.__dict__.get(attr, False) is None: self.__dict__.pop(attr) def _with_annotations(self, values): clone = super(AnnotatedColumnElement, self)._with_annotations(values) ColumnElement.comparator._reset(clone) return clone @util.memoized_property def name(self): """pull 'name' from parent, if not present""" return self._Annotated__element.name @util.memoized_property def table(self): """pull 'table' from parent, if not present""" return self._Annotated__element.table @util.memoized_property def key(self): """pull 'key' from parent, if not present""" return self._Annotated__element.key @util.memoized_property def info(self): return self._Annotated__element.info