You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

410 lines
15 KiB

# ext/compiler.py
# Copyright (C) 2005-2012 the SQLAlchemy authors and contributors <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Provides an API for creation of custom ClauseElements and compilers.
Synopsis
========
Usage involves the creation of one or more :class:`~sqlalchemy.sql.expression.ClauseElement`
subclasses and one or more callables defining its compilation::
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.sql.expression import ColumnClause
class MyColumn(ColumnClause):
pass
@compiles(MyColumn)
def compile_mycolumn(element, compiler, **kw):
return "[%s]" % element.name
Above, ``MyColumn`` extends :class:`~sqlalchemy.sql.expression.ColumnClause`,
the base expression element for named column objects. The ``compiles``
decorator registers itself with the ``MyColumn`` class so that it is invoked
when the object is compiled to a string::
from sqlalchemy import select
s = select([MyColumn('x'), MyColumn('y')])
print str(s)
Produces::
SELECT [x], [y]
Dialect-specific compilation rules
==================================
Compilers can also be made dialect-specific. The appropriate compiler will be
invoked for the dialect in use::
from sqlalchemy.schema import DDLElement
class AlterColumn(DDLElement):
def __init__(self, column, cmd):
self.column = column
self.cmd = cmd
@compiles(AlterColumn)
def visit_alter_column(element, compiler, **kw):
return "ALTER COLUMN %s ..." % element.column.name
@compiles(AlterColumn, 'postgresql')
def visit_alter_column(element, compiler, **kw):
return "ALTER TABLE %s ALTER COLUMN %s ..." % (element.table.name, element.column.name)
The second ``visit_alter_table`` will be invoked when any ``postgresql`` dialect is used.
Compiling sub-elements of a custom expression construct
=======================================================
The ``compiler`` argument is the :class:`~sqlalchemy.engine.base.Compiled`
object in use. This object can be inspected for any information about the
in-progress compilation, including ``compiler.dialect``,
``compiler.statement`` etc. The :class:`~sqlalchemy.sql.compiler.SQLCompiler`
and :class:`~sqlalchemy.sql.compiler.DDLCompiler` both include a ``process()``
method which can be used for compilation of embedded attributes::
from sqlalchemy.sql.expression import Executable, ClauseElement
class InsertFromSelect(Executable, ClauseElement):
def __init__(self, table, select):
self.table = table
self.select = select
@compiles(InsertFromSelect)
def visit_insert_from_select(element, compiler, **kw):
return "INSERT INTO %s (%s)" % (
compiler.process(element.table, asfrom=True),
compiler.process(element.select)
)
insert = InsertFromSelect(t1, select([t1]).where(t1.c.x>5))
print insert
Produces::
"INSERT INTO mytable (SELECT mytable.x, mytable.y, mytable.z FROM mytable WHERE mytable.x > :x_1)"
.. note::
The above ``InsertFromSelect`` construct probably wants to have "autocommit"
enabled. See :ref:`enabling_compiled_autocommit` for this step.
Cross Compiling between SQL and DDL compilers
---------------------------------------------
SQL and DDL constructs are each compiled using different base compilers - ``SQLCompiler``
and ``DDLCompiler``. A common need is to access the compilation rules of SQL expressions
from within a DDL expression. The ``DDLCompiler`` includes an accessor ``sql_compiler`` for this reason, such as below where we generate a CHECK
constraint that embeds a SQL expression::
@compiles(MyConstraint)
def compile_my_constraint(constraint, ddlcompiler, **kw):
return "CONSTRAINT %s CHECK (%s)" % (
constraint.name,
ddlcompiler.sql_compiler.process(constraint.expression)
)
.. _enabling_compiled_autocommit:
Enabling Autocommit on a Construct
==================================
Recall from the section :ref:`autocommit` that the :class:`.Engine`, when asked to execute
a construct in the absence of a user-defined transaction, detects if the given
construct represents DML or DDL, that is, a data modification or data definition statement, which
requires (or may require, in the case of DDL) that the transaction generated by the DBAPI be committed
(recall that DBAPI always has a transaction going on regardless of what SQLAlchemy does). Checking
for this is actually accomplished
by checking for the "autocommit" execution option on the construct. When building a construct like
an INSERT derivation, a new DDL type, or perhaps a stored procedure that alters data, the "autocommit"
option needs to be set in order for the statement to function with "connectionless" execution
(as described in :ref:`dbengine_implicit`).
Currently a quick way to do this is to subclass :class:`.Executable`, then add the "autocommit" flag
to the ``_execution_options`` dictionary (note this is a "frozen" dictionary which supplies a generative
``union()`` method)::
from sqlalchemy.sql.expression import Executable, ClauseElement
class MyInsertThing(Executable, ClauseElement):
_execution_options = \\
Executable._execution_options.union({'autocommit': True})
More succinctly, if the construct is truly similar to an INSERT, UPDATE, or DELETE, :class:`.UpdateBase`
can be used, which already is a subclass of :class:`.Executable`, :class:`.ClauseElement` and includes the
``autocommit`` flag::
from sqlalchemy.sql.expression import UpdateBase
class MyInsertThing(UpdateBase):
def __init__(self, ...):
...
DDL elements that subclass :class:`.DDLElement` already have the "autocommit" flag turned on.
Changing the default compilation of existing constructs
=======================================================
The compiler extension applies just as well to the existing constructs. When overriding
the compilation of a built in SQL construct, the @compiles decorator is invoked upon
the appropriate class (be sure to use the class, i.e. ``Insert`` or ``Select``, instead of the creation function such as ``insert()`` or ``select()``).
Within the new compilation function, to get at the "original" compilation routine,
use the appropriate visit_XXX method - this because compiler.process() will call upon the
overriding routine and cause an endless loop. Such as, to add "prefix" to all insert statements::
from sqlalchemy.sql.expression import Insert
@compiles(Insert)
def prefix_inserts(insert, compiler, **kw):
return compiler.visit_insert(insert.prefix_with("some prefix"), **kw)
The above compiler will prefix all INSERT statements with "some prefix" when compiled.
.. _type_compilation_extension:
Changing Compilation of Types
=============================
``compiler`` works for types, too, such as below where we implement the MS-SQL specific 'max' keyword for ``String``/``VARCHAR``::
@compiles(String, 'mssql')
@compiles(VARCHAR, 'mssql')
def compile_varchar(element, compiler, **kw):
if element.length == 'max':
return "VARCHAR('max')"
else:
return compiler.visit_VARCHAR(element, **kw)
foo = Table('foo', metadata,
Column('data', VARCHAR('max'))
)
Subclassing Guidelines
======================
A big part of using the compiler extension is subclassing SQLAlchemy
expression constructs. To make this easier, the expression and
schema packages feature a set of "bases" intended for common tasks.
A synopsis is as follows:
* :class:`~sqlalchemy.sql.expression.ClauseElement` - This is the root
expression class. Any SQL expression can be derived from this base, and is
probably the best choice for longer constructs such as specialized INSERT
statements.
* :class:`~sqlalchemy.sql.expression.ColumnElement` - The root of all
"column-like" elements. Anything that you'd place in the "columns" clause of
a SELECT statement (as well as order by and group by) can derive from this -
the object will automatically have Python "comparison" behavior.
:class:`~sqlalchemy.sql.expression.ColumnElement` classes want to have a
``type`` member which is expression's return type. This can be established
at the instance level in the constructor, or at the class level if its
generally constant::
class timestamp(ColumnElement):
type = TIMESTAMP()
* :class:`~sqlalchemy.sql.expression.FunctionElement` - This is a hybrid of a
``ColumnElement`` and a "from clause" like object, and represents a SQL
function or stored procedure type of call. Since most databases support
statements along the line of "SELECT FROM <some function>"
``FunctionElement`` adds in the ability to be used in the FROM clause of a
``select()`` construct::
from sqlalchemy.sql.expression import FunctionElement
class coalesce(FunctionElement):
name = 'coalesce'
@compiles(coalesce)
def compile(element, compiler, **kw):
return "coalesce(%s)" % compiler.process(element.clauses)
@compiles(coalesce, 'oracle')
def compile(element, compiler, **kw):
if len(element.clauses) > 2:
raise TypeError("coalesce only supports two arguments on Oracle")
return "nvl(%s)" % compiler.process(element.clauses)
* :class:`~sqlalchemy.schema.DDLElement` - The root of all DDL expressions,
like CREATE TABLE, ALTER TABLE, etc. Compilation of ``DDLElement``
subclasses is issued by a ``DDLCompiler`` instead of a ``SQLCompiler``.
``DDLElement`` also features ``Table`` and ``MetaData`` event hooks via the
``execute_at()`` method, allowing the construct to be invoked during CREATE
TABLE and DROP TABLE sequences.
* :class:`~sqlalchemy.sql.expression.Executable` - This is a mixin which should be
used with any expression class that represents a "standalone" SQL statement that
can be passed directly to an ``execute()`` method. It is already implicit
within ``DDLElement`` and ``FunctionElement``.
Further Examples
================
"UTC timestamp" function
-------------------------
A function that works like "CURRENT_TIMESTAMP" except applies the appropriate conversions
so that the time is in UTC time. Timestamps are best stored in relational databases
as UTC, without time zones. UTC so that your database doesn't think time has gone
backwards in the hour when daylight savings ends, without timezones because timezones
are like character encodings - they're best applied only at the endpoints of an
application (i.e. convert to UTC upon user input, re-apply desired timezone upon display).
For Postgresql and Microsoft SQL Server::
from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import DateTime
class utcnow(expression.FunctionElement):
type = DateTime()
@compiles(utcnow, 'postgresql')
def pg_utcnow(element, compiler, **kw):
return "TIMEZONE('utc', CURRENT_TIMESTAMP)"
@compiles(utcnow, 'mssql')
def ms_utcnow(element, compiler, **kw):
return "GETUTCDATE()"
Example usage::
from sqlalchemy import (
Table, Column, Integer, String, DateTime, MetaData
)
metadata = MetaData()
event = Table("event", metadata,
Column("id", Integer, primary_key=True),
Column("description", String(50), nullable=False),
Column("timestamp", DateTime, server_default=utcnow())
)
"GREATEST" function
-------------------
The "GREATEST" function is given any number of arguments and returns the one that is
of the highest value - it's equivalent to Python's ``max`` function. A SQL
standard version versus a CASE based version which only accommodates two
arguments::
from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.types import Numeric
class greatest(expression.FunctionElement):
type = Numeric()
name = 'greatest'
@compiles(greatest)
def default_greatest(element, compiler, **kw):
return compiler.visit_function(element)
@compiles(greatest, 'sqlite')
@compiles(greatest, 'mssql')
@compiles(greatest, 'oracle')
def case_greatest(element, compiler, **kw):
arg1, arg2 = list(element.clauses)
return "CASE WHEN %s > %s THEN %s ELSE %s END" % (
compiler.process(arg1),
compiler.process(arg2),
compiler.process(arg1),
compiler.process(arg2),
)
Example usage::
Session.query(Account).\\
filter(
greatest(
Account.checking_balance,
Account.savings_balance) > 10000
)
"false" expression
------------------
Render a "false" constant expression, rendering as "0" on platforms that don't have a "false" constant::
from sqlalchemy.sql import expression
from sqlalchemy.ext.compiler import compiles
class sql_false(expression.ColumnElement):
pass
@compiles(sql_false)
def default_false(element, compiler, **kw):
return "false"
@compiles(sql_false, 'mssql')
@compiles(sql_false, 'mysql')
@compiles(sql_false, 'oracle')
def int_false(element, compiler, **kw):
return "0"
Example usage::
from sqlalchemy import select, union_all
exp = union_all(
select([users.c.name, sql_false().label("enrolled")]),
select([customers.c.name, customers.c.enrolled])
)
"""
from sqlalchemy import exc
def compiles(class_, *specs):
def decorate(fn):
existing = class_.__dict__.get('_compiler_dispatcher', None)
existing_dispatch = class_.__dict__.get('_compiler_dispatch')
if not existing:
existing = _dispatcher()
if existing_dispatch:
existing.specs['default'] = existing_dispatch
# TODO: why is the lambda needed ?
setattr(class_, '_compiler_dispatch', lambda *arg, **kw: existing(*arg, **kw))
setattr(class_, '_compiler_dispatcher', existing)
if specs:
for s in specs:
existing.specs[s] = fn
else:
existing.specs['default'] = fn
return fn
return decorate
class _dispatcher(object):
def __init__(self):
self.specs = {}
def __call__(self, element, compiler, **kw):
# TODO: yes, this could also switch off of DBAPI in use.
fn = self.specs.get(compiler.dialect.name, None)
if not fn:
try:
fn = self.specs['default']
except KeyError:
raise exc.CompileError(
"%s construct has no default "
"compilation handler." % type(element))
return fn(element, compiler, **kw)