You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

325 lines
11 KiB

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# GuessIt - A library for guessing information from filenames
# Copyright (c) 2011 Nicolas Wack <wackou@gmail.com>
#
# GuessIt is free software; you can redistribute it and/or modify it under
# the terms of the Lesser GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# GuessIt is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# Lesser GNU General Public License for more details.
#
# You should have received a copy of the Lesser GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import unicode_literals
from guessit import fileutils
from guessit.country import Country
import re
import logging
__all__ = [ 'is_iso_language', 'is_language', 'lang_set', 'Language',
'ALL_LANGUAGES', 'ALL_LANGUAGES_NAMES', 'search_language' ]
log = logging.getLogger(__name__)
# downloaded from http://www.loc.gov/standards/iso639-2/ISO-639-2_utf-8.txt
#
# Description of the fields:
# "An alpha-3 (bibliographic) code, an alpha-3 (terminologic) code (when given),
# an alpha-2 code (when given), an English name, and a French name of a language
# are all separated by pipe (|) characters."
_iso639_contents = fileutils.load_file_in_same_dir(__file__,
'ISO-639-2_utf-8.txt').decode('utf-8')
# drop the BOM from the beginning of the file
_iso639_contents = _iso639_contents[1:]
language_matrix = [ l.strip().split('|')
for l in _iso639_contents.strip().split('\n') ]
language_matrix += [ [ 'unk', '', 'un', 'Unknown', 'inconnu' ] ]
# remove unused languages that shadow other common ones with a non-official form
for lang in language_matrix:
if (lang[2] == 'se' or # Northern Sami shadows Swedish
lang[2] == 'br'): # Breton shadows Brazilian
language_matrix.remove(lang)
lng3 = frozenset(l[0] for l in language_matrix if l[0])
lng3term = frozenset(l[1] for l in language_matrix if l[1])
lng2 = frozenset(l[2] for l in language_matrix if l[2])
lng_en_name = frozenset(lng for l in language_matrix
for lng in l[3].lower().split('; ') if lng)
lng_fr_name = frozenset(lng for l in language_matrix
for lng in l[4].lower().split('; ') if lng)
lng_all_names = lng3 | lng3term | lng2 | lng_en_name | lng_fr_name
lng3_to_lng3term = dict((l[0], l[1]) for l in language_matrix if l[1])
lng3term_to_lng3 = dict((l[1], l[0]) for l in language_matrix if l[1])
lng3_to_lng2 = dict((l[0], l[2]) for l in language_matrix if l[2])
lng2_to_lng3 = dict((l[2], l[0]) for l in language_matrix if l[2])
# we only return the first given english name, hoping it is the most used one
lng3_to_lng_en_name = dict((l[0], l[3].split('; ')[0])
for l in language_matrix if l[3])
lng_en_name_to_lng3 = dict((en_name.lower(), l[0])
for l in language_matrix if l[3]
for en_name in l[3].split('; '))
# we only return the first given french name, hoping it is the most used one
lng3_to_lng_fr_name = dict((l[0], l[4].split('; ')[0])
for l in language_matrix if l[4])
lng_fr_name_to_lng3 = dict((fr_name.lower(), l[0])
for l in language_matrix if l[4]
for fr_name in l[4].split('; '))
# contains a list of exceptions: strings that should be parsed as a language
# but which are not in an ISO form
lng_exceptions = { 'gr': ('gre', None),
'greek': ('gre', None),
'esp': ('spa', None),
'español': ('spa', None),
'se': ('swe', None),
'po': ('pt', 'br'),
'pob': ('pt', 'br'),
'br': ('pt', 'br'),
'brazilian': ('pt', 'br'),
'català': ('cat', None),
'cz': ('cze', None),
'ua': ('ukr', None),
'cn': ('chi', None),
'chs': ('chi', None),
'jp': ('jpn', None)
}
def is_iso_language(language):
return language.lower() in lng_all_names
def is_language(language):
return is_iso_language(language) or language in lng_exceptions
def lang_set(languages, strict=False):
"""Return a set of guessit.Language created from their given string
representation.
if strict is True, then this will raise an exception if any language
could not be identified.
"""
return set(Language(l, strict=strict) for l in languages)
class Language(object):
"""This class represents a human language.
You can initialize it with pretty much anything, as it knows conversion
from ISO-639 2-letter and 3-letter codes, English and French names.
You can also distinguish languages for specific countries, such as
Portuguese and Brazilian Portuguese.
>>> Language('fr')
Language(French)
>>> Language('eng').french_name
u'anglais'
>>> Language('pt(br)').country.english_name
u'Brazil'
>>> Language('Español (Latinoamérica)').country.english_name
u'Latin America'
>>> Language('Spanish (Latin America)') == Language('Español (Latinoamérica)')
True
>>> Language('zz', strict=False).english_name
u'Unknown'
"""
_with_country_regexp = re.compile('(.*)\((.*)\)')
def __init__(self, language, country=None, strict=False):
language = language.strip().lower()
if isinstance(language, str):
language = language.decode('utf-8')
with_country = Language._with_country_regexp.match(language)
if with_country:
self.lang = Language(with_country.group(1)).lang
self.country = Country(with_country.group(2))
return
self.lang = None
self.country = Country(country) if country else None
if len(language) == 2:
self.lang = lng2_to_lng3.get(language)
elif len(language) == 3:
self.lang = (language
if language in lng3
else lng3term_to_lng3.get(language))
else:
self.lang = (lng_en_name_to_lng3.get(language) or
lng_fr_name_to_lng3.get(language))
if self.lang is None and language in lng_exceptions:
lang, country = lng_exceptions[language]
self.lang = Language(lang).alpha3
self.country = Country(country) if country else None
msg = 'The given string "%s" could not be identified as a language' % language
if self.lang is None and strict:
raise ValueError(msg)
if self.lang is None:
log.debug(msg)
self.lang = 'unk'
@property
def alpha2(self):
return lng3_to_lng2[self.lang]
@property
def alpha3(self):
return self.lang
@property
def alpha3term(self):
return lng3_to_lng3term[self.lang]
@property
def english_name(self):
return lng3_to_lng_en_name[self.lang]
@property
def french_name(self):
return lng3_to_lng_fr_name[self.lang]
def __hash__(self):
return hash(self.lang)
def __eq__(self, other):
if isinstance(other, Language):
return self.lang == other.lang
if isinstance(other, basestring):
try:
return self == Language(other)
except ValueError:
return False
return False
def __ne__(self, other):
return not self == other
def __nonzero__(self):
return self.lang != 'unk'
def __unicode__(self):
if self.country:
return '%s(%s)' % (self.english_name, self.country.alpha2)
else:
return self.english_name
def __str__(self):
return unicode(self).encode('utf-8')
def __repr__(self):
if self.country:
return 'Language(%s, country=%s)' % (self.english_name, self.country)
else:
return 'Language(%s)' % self.english_name
ALL_LANGUAGES = frozenset(Language(lng) for lng in lng_all_names) - frozenset([Language('unk')])
ALL_LANGUAGES_NAMES = lng_all_names
def search_language(string, lang_filter=None):
"""Looks for language patterns, and if found return the language object,
its group span and an associated confidence.
you can specify a list of allowed languages using the lang_filter argument,
as in lang_filter = [ 'fr', 'eng', 'spanish' ]
>>> search_language('movie [en].avi')
(Language(English), (7, 9), 0.8)
>>> search_language('the zen fat cat and the gay mad men got a new fan', lang_filter = ['en', 'fr', 'es'])
(None, None, None)
"""
# list of common words which could be interpreted as languages, but which
# are far too common to be able to say they represent a language in the
# middle of a string (where they most likely carry their commmon meaning)
lng_common_words = frozenset([
# english words
'is', 'it', 'am', 'mad', 'men', 'man', 'run', 'sin', 'st', 'to',
'no', 'non', 'war', 'min', 'new', 'car', 'day', 'bad', 'bat', 'fan',
'fry', 'cop', 'zen', 'gay', 'fat', 'cherokee', 'got', 'an', 'as',
'cat', 'her', 'be', 'hat', 'sun', 'may', 'my', 'mr',
# french words
'bas', 'de', 'le', 'son', 'vo', 'vf', 'ne', 'ca', 'ce', 'et', 'que',
'mal', 'est', 'vol', 'or', 'mon', 'se',
# spanish words
'la', 'el', 'del', 'por', 'mar',
# other
'ind', 'arw', 'ts', 'ii', 'bin', 'chan', 'ss', 'san', 'oss', 'iii',
'vi'
])
sep = r'[](){} \._-+'
if lang_filter:
lang_filter = lang_set(lang_filter)
slow = ' %s ' % string.lower()
confidence = 1.0 # for all of them
for lang in lng_all_names:
if lang in lng_common_words:
continue
pos = slow.find(lang)
if pos != -1:
end = pos + len(lang)
# make sure our word is always surrounded by separators
if slow[pos - 1] not in sep or slow[end] not in sep:
continue
language = Language(slow[pos:end])
if lang_filter and language not in lang_filter:
continue
# only allow those languages that have a 2-letter code, those who
# don't are too esoteric and probably false matches
if language.lang not in lng3_to_lng2:
continue
# confidence depends on lng2, lng3, english name, ...
if len(lang) == 2:
confidence = 0.8
elif len(lang) == 3:
confidence = 0.9
else:
# Note: we could either be really confident that we found a
# language or assume that full language names are too
# common words
confidence = 0.3 # going with the low-confidence route here
return language, (pos - 1, end - 1), confidence
return None, None, None